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(Received 26 June 1961 and in revised form 27 December 1961) 

An analysis is given of some important experimental factors governing the generation of reflections 
from single crystals and their measurement by means of counters. When no monochromatization 
is employed other than that provided by fl filters, the moving crystal-moving counter (20-scan) 
technique is in principle best suited to reliable measurements of integrated reflection intensities, 
Ii(hkl). Under certain experimental conditions the Cauchy-like shape of the spectral component 
of the intensity profile necessitates corrections for losses resulting from the finite range of scan. 
Because of spectral dispersion Ii cannot be accepted as proportional to Ip, the peak intensity, 
except in a limited low-0 region. However, it is possible to establish correction curves to convert 
measured Ip's to Ii 's with reasonable accuracy. Recommendations are given for optimizing the 
conditions of measurement including algebraic expressions for the acceptable values of the crystal 
mosaicity and sizes of the crystal, X-ray source, and receiver aperture as imposed by the geometrical 
constraints of the apparatus. 

1. Introduction 

The past twelve years have witnessed a rapid develop- 
ment in the use of counter dfffractometers for the 
measurement of single crystal intensities. Exploratory 
studies by Lonsdale (1948) and by Wooster, Rama- 
chandran & Lang (1948) were followed by  a more 
extensive investigation by Cochran (1950), who showed 
tha t  counter techniques are inherently capable of 
considerably higher precision than photographic 
methods. Soon thereafter efforts were made to adapt  
Weissenberg cameras to Geiger-counter measurements 
(for example, Clifton, Filler & McLachlan, 1951; 
Evans, 1953), but  with somewhat mixed success. 
Renewed impetus to developments in counter appara- 
tus was provided by the introduction of proportional 
and scintillation counters and by the invention of the 
'Eulerian cradle' goniostat by Furnas & Harker (1955) 
which facilitated intensity measurements by (1) utiliz- 
ing the more convenient geometry of the 'fiat-cone' 
technique (Buerger, 1942) and (2) extending the range 
of data accessible with a single mounting of the crystal. 
In a subsequent modification of this instrument 
further advantages were gained by  changing the Z 
range from ( - 5 3  ° -  +53  °) to ( -  10 ° -  + 100 °) (Furnas, 
1957). 

As early as 1955 and especially very recently 
attention has tended to focus on the problem of reduc- 
ing the labor of gathering counter intensity data by 
means of automatic control systems (Bond, 1955; 
Benedict, 1955; Drenck, Diamant & Pepinsky, 1959; 
Ladell & Lowitzsch, 1960; Brown & Forsyth, 1960; 
Arndt, 1960; Ladell, Spielberg & Lowitzsch, 1960; 
Clastre, 1960; Arndt & Phillips, 1961). In  toto the 
current investigations represent a very costly and 
impressive investment in personnel time and instru- 

mentation, which is, of course, some indication of the 
great importance which crystallographers a t tach to 
the problem of removing this major barrier in the path  
of effective solution of complex crystal structures. 

The authors feel tha t  perhaps already overdue is a 
careful appraisal of the more basic systematic factors 
which must be reckoned with in the process of measur- 
ing integrated intensities with counters. The ensuing 
t reatment  encompasses the following principal topics: 
(1) analysis of the 20- and w-scan techniques on the 
basis of the reciprocal lattice concept, (2) synthesis 
of reflection profiles by the convolution method, 
(3) development of correction curves for the effect of 
limited scanning ranges, (4) derivation of curves for 
the conversion of peak to integrated intensities, (5) 
discussion of the accuracy in lattice constants required 
for the determination of the crystal orientation set- 
tings, (6) practical recommendations. I tem (4) consti- 
tutes a critical evaluation of the contention frequently 
voiced tha t  under appropriate conditions the intensity 
diffracted by a s tat ionary crystal is proportional 
to the integrated intensity (Cochran, 1950; Lang, 
1954; Furnas & Harker, 1955; Furnas, 1957). The 
significant findings of the present investigation may  
be grasped by reading only the main text;  the more 
determined reader will find in the appendixes a 
detailed exposition of some of the underlying geomet- 
rical X-ray optics. In  particular we may  note the 
presence of material relative to the concept of inte- 
grated intensity in Appendixes A and B and to the 
choice of receiving aperture dimensions in Appendix D. 

The ult imate goal of this s tudy was to develop 
procedures for measuring relative intensities with high 
reliability without paying an undue penalty in time 
expended. In pursuing this goal we have examined 
the sources of deviations of the experimental inten- 
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sities from their ideal values, and this has served to 
supply a basis for criteria of acceptability. Although 
the end sought has necessitated a degree of compromise 
between accuracy and speed, chief emphasis has been 
placed on accuracy. In  behalf of speed and simplicity 
of technique, however, in the present paper we 
consider only the case of an incident beam taken 
directly off the focal spot of the X-ray tube with no 
monochromatization other than  that  provided by fl 
filters and the natural  response curve of the counter. 

In  the interests of economizing space little or no 
mention will be made of errors due to crystal mis- 
alignment, counting statistics, extinction, absorption 
of X-rays by the crystal, and time-wise variation in 
direct beam intensity. I t  will be assumed tha t  care 
has been exercised to minimize errors of these kinds. 
In  the present s tudy the experimental data  were 
measured with a General Electric XRD-5 diffraction 
unit  equipped with a Single Crystal Orienter (Furnas, 
1957) and a krypton-filled proportional counter. The 
collimators were modified as required by the investiga- 
tion. 

2. General  e x p e r i m e n t a l  condi t ions  

We adopt the conventions employed by Furnas (1957) 
and later recommended for standardization by Arndt 
& Phillips (1958) in designating the three crystal 
orientation axes as shown in Fig. 1: ~o (also 0 and 20), 

j/s* 1 
i lll ] 

Fig. 1. Geometry of the three-circle single-crystal 
diffractometer. 

rotation about the vertical axis of the diffractometer; 
%, angle of inclination about a horizontal axis; 
and ~, rotation about the axis of the goniometer head 
(or azimuth). X is the center of the focal spot, C the 
center of the crystal, and CR the direction of the beam 
diffracted by  the planes (hkl). CN is the plane normal. 
I t  will be assumed tha t  intensities are to be recorded 
by  the 'flat-cone' technique (Buerger, 1942), which 
necessitates tha t  the reflections be brought into the 
equatorial plane, XCR, by appropriately tilting the 
crystal using the Z motion. 

Some additional experimental conditions remain to 
be specified: (1) The focal spot is viewed at  such an 
angle tha t  its projection is at  least approximately 
equidimensional. (2) The crystal dimensions are much 
smaller than the dimensions of the projected focal spot. 
(3) The direct beam is not collimated in the usual sense; 
it is surrounded over much of its length by an 'anti- 
scatter '  cylindrical turn, el of an aperture sufficient to 
permit all points on the crystal to 'view' all points on 
the focal spot without obstruction. (4) Likewise the 
diffracted beam collimator is cylindrical and of suf- 
ficient aperture to cause no obstruction of the dif- 
fracted beam, which means tha t  its only function is 
to exclude unwanted radiation from the counter. 
(5) I t  is assumed tha t  the portion of the counter 
window exposed by the receiving aperture is uniformly 
sensitive to the diffracted X-rays. 

In  Appendixes A and B it is shown tha t  when a 
crystal of negligible absorption for the X-ray beam 
of wavelength ~t0 is turned through the entire angular 
range corresponding to diffraction from any given 
planes (hkl), every point on the crystal diffracts X-rays 
originating at  every point on the source. Under these 
circumstances and those prescribed in the preceding 
paragraph, every volume element of the crystal 
contributes with equal weight to the over-all diffracted 
energy.* This over-all energy we shall regard in the 
present paper as a measure of the integrated reflection 
intensity, I~(hkl). I t  is implicit in this definition tha t  
in any actual measurement an appropriate correction 
will be made for diffracted energy due to wavelengths 
other than ~0. In an actual experiment it is evident 
tha t  a discrete wavelength, ~t0, cannot be attained, 
for which reason we shall regard )~o as referring to the 
particular narrow distribution of wavelengths com- 
prising a given spectral line, for example, K#, Kal ,  Ka2, 
or the combined doublet Kal,2. In  regard to the 
concept of integrated intensity the reader is also 
referred to Compton & Allison, 1935, pp. 405-15, and 
Furnas, 1957, pp. 71 and 99. 

3. Condit ions  of m e a s u r e m e n t :  
Ideal ized case  

We wish to consider first the idealized case of dif- 
fraction involving (1) a perfect point crystal, (2) a 
point source of t ruly  monochromatic X-rays, and 
(3) a recelv~ng aperture of non-critlcal size. ttowever, 
in order to preserve the validity of certain quantita- 
tive arguments in the ensuing discussion, we shall find 
it necessary to replace items (1) and (2) by the very 
close approximations of (1) a very small, perfect crystal 
and (2) a very small source of t ruly  monochromatic 
X-rays. 

With reference to Fig. 2, the crystal is turned 
about the axis  Q through an angle coo chosen so tha t  

* It is perhaps self-evident that this is also contingent 
upon the crystal's turning with uniform angular velocity. 
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2O 
scan 

Fig. 2. Idealized reciprocal-lattice diagram of diffraction by 
planes (hkl)  and measuremen t  by the  co-scan and 20-scan 
techniques.  

the desired reciprocal lattice point Po(hkl) on the 
equatorial net intersects the sphere of reflection. 
QPo is then the direction of the central lattice row 
line of which Po(hkl) is a member. The direct and 
diffracted beam vectors are, as customary, So and s, 
the reciprocal lattice vector of the diffracting point 
Po(hkl) is ~0H, and the radius of the reflecting sphere 
is unity. We consider three simple experimental 
arrangements, all based on the fiat-cone geometry 
(Furnas, 1957, Chapter VII):  

1. Stat ionary crys ta l - -s ta t ionary counter. 
2. Moving crys ta l - -s ta t ionary  counter (w scan). 
3. Moving crystal--moving counter (20 scan). 

When the crystal is rotated to the position wo and 
the receiver set at the angle 20o, a very narrow dif- 
fracted ray  enters the receiver. With stationary 
crystal and counter a measure of Ip, the peak intensity, 
can be obtained by  recording the number of counts, 
Nt, received in a fixed period of time t. Next we leave 
the receiver set at  the angle 200, mis-set the angular 
position of the crystal to o~0-dio), and then cause the 
crystal to turn  at constant angular velocity from 
o~0- di~o to w0 + di¢o. As it passes through the reflecting 
angle coo, the point Po(hkl) intersects the sphere of 
reflection (following the circular path  marked 'w scan' 
in Fig. 2) and a number of counts is obtained which 
is a measure of Ii, the integrated intensity. Finally, 
if the motions of crystal and receiver are coordinated 
so tha t  the angular velocity of revolution of the 
receiver is double tha t  of rotation of the crystal 
(2~o and ~b respectively), the receiver scans reciprocal 
space along the direction of a central lattice row line 
marked '20 scan' and through the point Po(hkl), 
and once again some number of counts is obtained 
which is a measure of Ii. 

In  the above procedures we may observe tha t  the 

reflected ray  is very narrow, so tha t  its intensity 
profile as a function of Am or A20 is very sharp. 
In  the ideal limiting case it becomes line-like (a delta 
function). 

4. C o n d i t i o n s  of m e a s u r e m e n t :  
Rea l  c a s e  

We next consider the conditions prevailing .when the 
X-ray beam is not strictly monochromatic (there is 
a wavelength dispersion of A ~//~), the crystal possesses 
finite dimensions and mosaic character, and the X-ray 
source has finite dimensions. These four factors have 
the effect of smearing out the discrete crystal orienta- 
tion angle, w0, corresponding to the generation of a 
reflection (hkl) (contrast Fig. 3 with Fig. 2). Desig- 
nating the above four factors by the respective 
subscripts ~t, c, m, and x, we may describe each effect 

Po(hM) 

.,y° 
o -~ 

Fig. 3. Reciprocal-latt ice diagram of diffraction by planes (hkl)  : 
Real case. 

as an angular increment" ± dico~, ± die)c, ± di~om, and 
± (~wz. These combine to produce an over-all angular 
range of orientation (Furnas, 1957, pp. 91 and 99), 

2diw=2 (diwx+ diwc+ diO)m-~- diO)x) , 

in which detectable intensity from the planes (hkl) 
is recorded by the counter located at  the calculated 
angle 20o. With reference to Fig. 3, detectable in- 
tensi ty will be recorded from the time P~ intersects 
the sphere of reflection until P~ does so. Wavelengths 
other than ~t0 diffracted by the reciprocal lattice point 
(hkl) produce a range in the length of the vector 2H, 
which is indicated by the shaded zone of the figure. 
The amount of intensity due to these unwanted 
wavelengths which is received simultaneously when 
the receiver is set at  the angle 20o depends upon the 
angular width, A20, of the receiving aperture. On the 
other hand, when the crystal and receiver are both 
moved with the relative angular velocities tb and 2¢b, 
the receiver searches in the direction of the central 
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lattice row line and therefore measures this entire 
band of wavelengths progressively. 

0 )  I 

F 
Fig.  4. G e o m e t r y  of the  o9 scan.  

Fig. 4 illustrates the 09-scan geometry. Because of 
the angular range of the receiving aperture, /120, 
diffracted intensity is recorded from diffraction vec- 
tors, 2H, terminating anywhere on the circle of reflec- 
tion between points P~ and/)s (black segment of circle). 
Therefore, assuming an angular range of orientation 
of the crystal, _ (~09, as explained above, with the 
receiver centered at the angle 200, finite diffracted 
intensity will be recorded for all orientations of the 
crystal in the range 091 to 092. Furthermore this involves 
contributions from a range of wavelengths extending 
from I2iHI=QPi to 12sill =QPs. In a practical meas- 
urement the central angle 200 is chosen so that  the 
range Q P i - Q P s  is approximately centered about the 
wanted characteristic wavelength defined by I20HI = 
QPo. 

P0 

P,f 

uJ 2 

0 

Fig.  5. G e o m e t r y  of the  20 scan.  

Fig. 5 illustrates the 20-scan geometry. For clarity 
the angular orientation range of the crystal, (509, is 
not indicated for each of the three crystal orientation 
angles o91,090, and 092, but the reader is asked to keep 
in mind its presence. With the crystal set at the 
orientation angle cot and the receiving aperture set 

at the angle 201, the scan across the reflection (hid) 
is begun. At the crystal position wl the counter is 
receiving diffracted intensity from the planes (hkl) 
due to a band of wavelengths extending from IRH I = 
QPil to I RH I = QP{ and centered about the wavelength 
121HI--QPt. At the crystal orientation 090 the counter 
is receiving from the planes (hkl) a band of X-ray 
wavelengths centering about 20, the desired charac- 
teristic wavelength. Finally, at the completion of the 
scan, X-rays of wavelengths centering about 22 are 
being counted with the crystal set at the angle 092 
and the receiver at 202. During the scanning process 
the receiver has resolved through the angle /120= 
202-20t while the crystal has rotated through one- 
half this angle, 

A 09 = 092- 09t = ½/120. 

This description of the scanning process has taken 
no account of any X-ray intensity received by the 
counter due to wavelengths diffracted by planes other 
than the specific planes (hkl). In most instances such 
contributions are of only minor importance, but 
occasionally they produce significant variations in the 
background surrounding the point P(hkl) or even 
changes in the peak intensity. Such effects will be 
more frequently encountered when the reciprocal 
lattice translations are small. 

(hk! ) (2h, 2k,21)  (3h,3k,31) (4h,4k,41) 

(c) 

Fig. 6. Hypothetical profiles of the central reciprocal lattice 
row (nh, nlc, nl). (a) and (b) 20 scan, (c) o9 scan. 

I t  has been pointed out that  the 20-scan follows a 
central lattice row line. When monochromatization is 
not complete, as is always more or less true of any 
actual experiment, every point on the row line has 
associated with it a linear trail of subsidiary diffracted 
intensity extending in the direction of the row line. 
In Fig. 3 this effect has been depicted for any one 
reciprocal lattice point. In Fig. 6(a) are sho~n hypo- 
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thetical spectral profiles associated with the first four 
members of the central row line (nh, nk, nl). Because 

28 

24 ° 

34 ° 

38.9 ° 

54.6 ° 

hkO 

550 

660 

770 

880 

11"11'0 

I I I I I [ I 
- 3  - 2  --1 0 1 2 3 

A 28 (degrees) 

Fig .  7. E x p e r i m e n t a l  p ro f i l e s  of  t h e  c e n t r a l  r e c i p r o c a l  l a t t i c e  
r o w  (nh, nk,  0). T e t r a p h e n y l  t in ,  N b - f i l t e r e d  Mo r a d i a t i o n ,  
20 scan .  

% 

o 

f I I / I J 
- - 3  0 1 2 3 

.4 2 0 (degrees) 

Fig .  8. E x p e r i m e n t a l  p ro f i l e s  o b t a i n e d  w i t h  l~ i - f i l t e red  Cu 
radiation by the 20-scan technique. 

(a) (CsHs)2SiCH2CI-I2Si(C6Hs) 2, 20=25'2 °. 
• I O I 

(b) (CsHs)4Si, 20= 122.3 °. 

A C 15 m 64 

of the increase in dispersion with order n, the spectra 
overlap to an increasing extent with increasing n. 
In general, as shown in :Fig. 6(b), this results in obvious 
'background' variations at the lower orders but 
relatively smooth backgrounds at the higher orders 
when intensities are measured by the 20-scan method. 
:Fig. 7 illustrates this effect by means of five reflections 
of the sequence (hkO) obtained from a crystal of 
tetraphenyl tin using niobium-filtered molybdenum 
radiation. Fig. 8 shows the reflection profiles obtained 
with nickel-filtered copper radiation from two organo- 
silicon compounds at 20 =25.2 ° and 122.3 ° . Compared 
with the molybdenum patterns the background with 
copper radiation is seen to be smoother at both small 
and large angles. 

Returning to the (o-scan procedure, as described 
earlier and illustrated in :Fig. 4, the receiving aperture 
remains stationary at some angle 200 centered about 
a crystal reflection position while the crystal is rotated 
through its reflecting angle w0, which lies midway 
between the scan limits o91 and w2. The result is the 
same as if the receiver scanned the region of the 
desired reflection but in a direction transverse to the 
central lattice row line. As shown in Fig. 6(c) the 
background observed by this technique is lower and 
much more constant than was obtained using the 
20-scan technique. This is because the scan path 
proceeds from a point in reciprocal space completely 
outside the 'ridge' of general radiation intensity 
lying in the row line to a corresponding final point 
on the opposite side of the ridge. I t  is important to 
take note of the fact that  when the background is 
measured in this way and subtracted from the over-all 
intensity including the peak, the net measured inten- 
sity of the reflection will contain significant contribu- 
tions from wavelengths other than ;to. The unwanted 
intensity components will tend to bulk largest for 
unfiltered radiations of short characteristic wavelength 
and will be at a minimum for crystal-monochromatized 
radiations including pulse-height discrimination to 
eliminate submultiples of ;to. 

Fig. 9 shows experimental profiles of the (400) 
reflection from a crystal of tetrapbenyl tin that  
illustrate the distinctive features of the 20 and co scans 
which were pointed out above. The reader will note 
the similarity to Fig. 6(b) and (c). A comparison of 
the 20 and co profiles shows clearly that  the lower 
portion of the w profile is due to wavelengths in the 
general radiation spectrum. By interpolating linearily 
between background readings taken at bl and b2 on 
the 20 pattern, one can obtain the integrated intensity 
due to Mo Ka radiation without serious error. This 
example shows plainly, however, that  at small Bragg 
angles the spectra of the various orders tend to be 
resolved, necessitating a preliminary mapping of the 
background surrounding each characteristic reflec- 
tion. I t  is self-evident that  adopting the practice of 
measuring the background at points removed some 
standard distance (_+ 1-5 ° for example) from the peak 



988 M E A S U R E M E N T S  W I T H  THE T H R E E - C I R C L E  COUNTER D I F F R A C T O M E T E R  

14 

12 

10 

7 
o ,-- 8 

x 

E 

j+ 

! 2, 

/ 
4 Mo Nb ~ Mo [ , Kr 

K, s K  b,/K~, ~ ! K 
2 b2 ; I i z ........ i ..... / , 

20(") 12 13 14 15 16 17 18 
__~ . . . .  i . . . .  L . . . . . .  

tu (°) 307 308 

Fig. 9. Exper imen ta l  profiles of the  (400) reflection of (C6Hs)4Sn 
obta ined  wi th  20 and  v9 scans. Nb-fi l tered Mo radiat ion.  

position will result not infrequently in significant 
errors. In Fig. 9 the reader's attention is also directed 
to the intensity discontinuities caused by the K 
absorption edges of niobium and krypton. These 
effects are broad rather than sharp because of the 
broad X-ray optics of the apparatus. 

A more striking example of the contrast between 
20 and co scans is depicted in Fig. 10. Here the longer 
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Fig. 10. Exper imen ta l  profiles of the  (220) reflection of 
(C6Hs)4Sn obta ined with  20 and  o~ scans. Nb-fi l tered Mo 
radiat ion.  

wavelengths dispersed by the (110) planes produce 
a steeply sloping background beneath the feeble (220) 
reflection. On the contrary, the co-scan background, 
although very uniform, would nevertheless lead to a 
very large positive error in the integrated intensity 
due to the inclusion of unwanted wavelengths. From 
the foregoing observations we conclude that  the 
20-scan method lends itself to a proper evaluation of 
the reflection intensities so long as the intensity 
profile of the row line concerned is first determined 
and the scan range judiciously selected for each 
reflection. 

5. Intensity  profile of the diffracted b e a m  

We next investigate the nature of the profile of the 
diffracted beam as a function of displacement of the 
crystal orientation from the calculated angle w0. For 
simplicity we shall refer to such angular displacements, 
A co, as fl units. I t  should be noted that  the angular 
mis-setting of the crystal may also be expressed in 
terms of 20 units, which are identical dimensionally 
with fl units. Furthermore, since in the 20-scan 
technique the motions of the crystal and receiver are 
coordinated with respective velocities cb and 2~b, 
the displacement of the receiver from the calculated 
angle 200 is given by/120=2fl .  

Attention being confined first to the 20-scan proce- 
dure, each of the four experimental factors described 
earlier permits a degree of smearing out of the ideally 
discrete crystal orientation angle, w0, as already 
explained. Let their intensity profiles as functions of 
the displacement fl be denoted as follows: 

spectral dispersion I (fl)x 
crystal size I (fl)c 
crystal mosaicity I (fl)m 
X-ray source I (fl)= 

These four components combine by the convolution 
principle, which may be expressed: 

I(flhc = l I ( ~ h  I(c~--~)c dc~, 

I ( # h ~  = I I(~)~c I(~-~),, ,d~x, 

I I(¢¢)a~I(~x--fl)=d~x. (1) I ( fl h~,,x 

If we scan the intensity profile I(fl)x~,z completely, 
and assuming that the receiving aperture is large 
enough to receive the entire diffracted beam, we 
obtain a measure of the integrated intensity, 

= l Z ( f l ) ~ d f l ,  (2) Ii 

in which expression we have for simplicity assumed 
a zero 'background' level. If we want to measure the 
peak intensity, Iv, we must rotate the crystal until 
the profile of the convolution I(flhcm superposes the 
I(fl)x profile so as to yield a maximum value of the 
sum of the products of their respective ordinates. Thus 
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We now proceed to synthesize the diffracted beam 
profile I(flhcmx for representative and somewhat 
idealized components I~, Ie, Im, and Ix. Although the 
precise shapes of characteristic X-ray emission lines 
have not yet  been determined because of unusual 
difficulties affecting the experimental techniques, we 
may  to a first approximation assign to the spectral 
dispersion function a Cauchy shape (Ladell, Parrish 
& Taylor, 1959), namely, 

I(~-~o)=K/[l+(/~-2o)2/(½w~)2], (4) 

in which w~ is the full width at  half-maximum inten- 
sity of the given spectral line, say, Ka~ or Ka2. In 
terms of the angular misorientation of the crystal, fl, 
and for Bragg angles not too close to 90 °, equation (4) 
may be written (Ekstein & Siegel, 1949): 

I(flh=K/[1 + (2#/W~)2]. (5) 

Since when fl=O, I(fl)~=Imax=K, (5) becomes 

I (fl)~=Imax/[1 + (2fl/W~)2] . (6) 

In  ~quations (5) and (6) Wa is the full width at half- 
maximum intensity of the I(flh profile, 

W~=(A~/~) tan 0 .  (7) 

Compton & Allison have tabulated values of the 
constant A~t for each of the common characteristic 
radiations (Compton & Allison, 1935, p. 745). 

I t  is shown in Appendix A tha t  the crystal size 
function for a t ransparent  cylindrical crystal of radius 
re has the intensity profile 

I (#)c--/max [1 -- (Rxfi/re)2]½, (8) 

where Rx is the distance from the midpoint of the 
X-ray source to the center of the crystal. We shall 
assume tha t  mosaic structure of the crystal to be 
characterized by  a Gaussian distribution of orienta- 
tions. Then 

I( f l)m=K exp (--/c~fl~.), 

where k is determined by  the full width at half- 
maximum intensity, 

W,n=2fl½=2/k (log~ 2)½. (9) 

When f l=0,  I(fi)m=Imax=K. Hence 

I (fl)m=Imax exp (--/c2fl2). (10) 

As explained in Appendix ]3, an acceptable idealized 
model of the intensity profile of the X-ray source is 
a trapezoid with the dimensional proportions fl½/flo = 
0.80. 

Fig. 11 shows the four idealized components of the 
final intensity profile corresponding to the following 
specific experimental conditions: 

0"0 

~. c m 
1"0 

0"8 

• ~ 0.6 

_~ o.4 
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0"31 o 

0~0 : OJ'2 ' 014 LO]6 ' 0~8 1"0 
Scale of degrees (/~, or  Zl ~, units) 

Fig. 11. Idealized components of the final intensity profile for 
representative experimental conditions: Spectral 2, crystal 
cross section c, mosaicity m, X-ray source x. 

I(flh, spectral profile of the Cu Kal line with 
Wx of equation (6) equal to 0-1 °. This is equivalent 
to 0=78  ° using equation (7) with A~t/2,=0.000378 
(Furnas, 1957). 

I(fl)c, crystal size profile with re=0"015 cm. and 
Rx= 14.55 cm. in equation (8). 

I(fl)m, crystal mosaicity profile with Win=0.1 ° 
as defined by equation (9). 

I(fl)x, trapezoidal X-ray source profile of 0-31 ° 
width at half-maximum intensity ( Wx = 2fi½ -- 0-31 o). 
This is equivalent to a 'rectangular'  focal spot 11 
ram. in length at  half-maximum intensity, a take-off 
angle of 4 °, and Rz = 14-55 cm. 

In  :Fig. 12 these four components have been com- 
bined by the convolution method with the aid of an 
I.B.M. 650 computer, as indicated in principle in 
equations (1), to give the final kinematic intensity 
profile appropriate to the 20-scan technique, I (fl);,cmx. 
Two features of this profile are noteworthy. First, its 
width at  half-maximum intensity, 0.345 ° , is only 
slightly greater than tha t  of its broadest component, 
the X-ray source profile. Second, the slow decay with 
increasing fl of the Cauchy spectral function produces 
a like extended 'tailing off' of the convolution. 

I 
0"6 I 0"4 

0"2- 
0 ~ ~ - I : 

- 0 " 8  - 0 " 6  - 0 " 4  - 0 " 2  0 0"2 0"4 0"6 0"8 
(°) 

Fig. 12. Kinematic intensity profile, I(flhcmx. This is the 
convolution of the components shown in Fig. 11. 

For intermediate take-off angles the dominant 
influence of the source on the experimental profile is 
illustrated in Fig. 13. Here the (100) reflection from 
a small crystal of a-quartz observed at  20=20.9 ° 
using nickel-filtered Cu radiation and a take-off angle 
of 4 ° is compared with a synthetic intensity profile 
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I 

20"2 20"5 21 "0 21.4 
20 (o) 

Fig. 13. (a) Expe r imen ta l  profile of the (100) reflection of 
a -quar tz .  (b) Synthe t ic  a t a  2 profile composed  of over- 
lapping images of the  X - r a y  source. Cu target ,  4 ° take-off  
angle, 20 ---- 20-9 °. 

constructed by superposing two source profiles of the 
same X-ray tube so as to simulate the a~a~ composite 
diffraction image. This was done by displacing a 
source profile of amplitude 0.5 by an angle 0.054 ° 
from an identical profile of amplitude 1.0. I t  is evident 
tha t  the combined effects of spectral dispersion within 
Kal  and Ka2, crystal size, and mosaicity modify the 
source image to only a minor degree. Although the 
X-ray source is still the dominant component at larger 
Bragg angles, the effects of spectral dispersion become 
more conspicuous as can be seen in Fig. 14. Here the 
(11.7.0) reflection from a crystal of tetraphenyl silicon 
is compared with a composite Kala~ source profile. 
The diffraction angle is 20 = 122.3 ° and the separation 

> . ~  s ~ 

5 / 
c i 

* J  I 

-= I 

I 

120 121 122 123 124 
28(  ° ) 

Fig. 14. (a) Exper imen ta l  profile of the  (11,7,0) reflection of 
(C6H5)4Si. (b) Synthe t ic  axa~. profile composed  of two 
over lapping images of the X - r a y  source. Cu target ,  4 ° take-  
off angle, 20--- 122.3 ° . 

of the Cu Ka doublet components is 0-55 ° . The 
'tailing off' of the profile due to the Cauchy-like 
spectral component is much more noticeable than at  
20=20.9 ° (Fig. 13). In addition the experimental 
profile is considerably smoothed and rounded due to 
the greater breadth of the spectral element and 
probably as well to the mosaic character of the crystal. 

The slow decay of the spectral component with 
increasing fl results in a continuous decrease in the 
measured background and increase in the measured 
integrated intensity as the scan range is increased. 
This phenomenon is more conspicuous and has more 
practical consequences at  the larger Bragg angles. 
Fig. 15 portrays by means of a synthesized Cu K~1,2 
reflection profile for 20=  122 ° how a significant loss 
in the measured value of Ii  will occur for a scan 
range of 2 ° Since spectral dispersion varies as tan  0, 
the loss in Ii at small O's is negligible for scanning 
ranges larger than, say, 2 ° , whereas at large O's the 
losses are appreciable even when using the largest 
feasible ranges. 

• o scan range 2.0 ° . 

9"~o li Lost 

Fig. 15. Loss in measured  in tegra ted  in tens i ty  corresponding 
to a given scan range. Synthe t ic  Cu K a y ,  2 profile (I~.cmx) 
for Wx=0 .31  ° and 2 0 =  122 ° . 

I t  is not possible to calculate the extent  of the 
losses in measured values of It  without a knowledge 
of the shape of the spectral component, Ia, of the 
convolution, Iac,n z. Double-crystal spectrometer in- 
vestigations of spectral line shapes do in fact indicate 
appreciable deviations from the ideal Cauchy shape 
for fl values considerably greater than fl½, the abscissa 
corresponding to half-maximum intensity. Further-  
more, it appears tha t  the deviations may differ in 
both sign and magnitude Ir0m one radiation to 
another, although the results reported to date are too 
f ragmentary to permit a definite conclusion to be 
drawn (Compton & Allison, 1935, pp. 718-50; Ladell, 
Parrish & Taylor, 1959) 

Bearing in mind the need for clarification of the 
spectral line shape, we have calculated the losses in 
the measured values of I~ on the assumption of the 
Cauchy spectral line shape (equations (4) and (6)) for 
the typical experimental conditions: We=0.1 °, Wm = 
0.1 °, and Wx=0.31 ° The X-ray source width of 0.31 ° 
corresponds to a rectangular focal spot approximately 
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Fig.  16. M e a s u r e d  % 1~ as  a f u n c t i o n  of 20 a n d  scan  range .  
E x p e r i m e n t a l  p a r a m e t e r s :  Wc = 0.1 o, Wm= 0" 1 °, Wx = 0" 31 o, 
C a u c h y  spec t r a l  prof i le ,  Cu K a  r a d i a t i o n .  

1.0 cm long viewed at a take-off angle of 4-0 °. In  
terms of the convolution notation employed in equa- 
tions (1), the constant convolution Icmx was first 
computed and this then convoluted with successive 
spectral profiles, I~, corresponding to the dispersion 
within Kc¢~ or Ka2 for Cu Kc¢ radiation at a series of 
values of 20. Finally the effect of c¢1~2 separation 
was allowed for by appropriately displacing one profile 
I¢~,~ of intensity 0.5 with respect to a second profile 
Ic~,~ of identical shape but  unit  intensity. These 
synthetic (I,mz~)ala2 profiles were then analyzed for 
% It measured versus scan range in the manner shown 
graphically in Fig. 15. Fig. 16 shows the results in 
terms of curves of constant %I~ measured plotted 
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Fig.  17. Cor rec t ions  to  be  a p p l i e d  to  m e a s u r e d  I i  va lue s  b a s e d  
on  Wc ---- 0.1 o, Wm= 0" 1 °, Wx = 0" 31 °, C a u c h y  spec t r a l  prof i le ,  
Cu K a  r a d i a t i o n .  
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Fig.  18. Cor r ec t i ons  to  be  a p p l i e d  to  m e a s u r e d  I i  va lue s  ba sed  
on  Wc----0"l °, Wm =0"1% Wx---0"31 °, C a u c h y  spec t r a l  prof i le ,  
Mo K a  r a d i a t i o n .  

as a function of 20 and scan range. Fig. 17 portrays 
the same results in the form of percent corrections 
to be applied to experimental I~ values for various 
scan ranges and as a function of 20. Fig. 18 gives 
equivalent correction curves for Mo Ka radiation 
deduced by the same method. 

The curves of Figs. 17 and 18 may be used to give 
first-order corrections to observed measurements of 
I~ provided their limitations are duly recognized. 
First  and foremost, they are based and sensitively 
dependent upon a hypothetical spectral line shape for 
which there is as yet  no conclusive experimental 
evidence. Second, these curves are valid only if the 
X-ray source width is approximately 0"31 ° (say 
within the limits 0.28 ° to 0-34 °) and if Wc and Wm 
are much smaller than Wx. Hence, for unusually large 
crystals or for crystals of large mosaic character the 
curves will be inapplicable. 

6. I n t e g r a t e d  ve r sus  peak  in tens i ty  

We are now in a position to examine critically the 
proposition tha t  under appropriate conditions the 
intensity diffracted by a s tat ionary crystal is propor- 
tional to the integrated intensity, which is the same 
as stating tha t  expressions (2) and (3) are related by 
a constant factor. In  this connection we may observe 
tha t  (3) is the maximum ordinate of the integrated 
intensity profile (2). 

Because of spectral dispersion, both the angular 
separation of the K s  doublet components and the 
width of each component are proportional to tan  0. 
Furnas has tabulated numerical values of these two 
effects for the common characteristic radiations 
(Furnas, 1957). The integral breadth of the pure 
K~I or K~2 spectral profile may be expressed: 
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i W~.= I I(fl)2dt~/(I(fl)2)"~--lc tan 0 .  (11) 

But  for the purpose of the present discussion 

I I(fl)2d fl is constant, which means that  the peak 

intensity, (I(fl)2)m~, varies inversely as t an0 .  Of 
course the actual intensity profile of a reflection is 
the convolution of the spectral function 12 with the 
other instrumental functions, for which reason the 
observed decrease in peak intensity and increase in 
breadth will both be smaller in relative magnitude 
than those of the pure spectral function. In an earlier 
publication one of us employed the convolution 
method to compute the relative broadening of the 
final convolution in terms of the broadening of one 
of its elements (Alexander, 1950). Using the same 
approach we have determined the broadening of the 
convolution 

~r(~)~z = f I(o~)~.,,,I(~-~)~d~ 

as a function of the breadths of its two components, 
Icrn= and I~. Icmx was assigned a constant breadth 
appropriate to a given set of experimental conditions, 
while the breadth of I2 was taken to be given by 
equation (11) with k=0.000378 (CuKc~l radiation). 
The result for representative experimental constants 
( W~--0-1°, W~=0"I  °, W==0-31 °) is portrayed in 
It/Ip units in Fig. 19 by the curve labeled 'dispersion 
within al  or c~2'. In order to simplify the calculations 
it  has been assumed tha t  the dispersions within at  
and a~. are identical, which is only approximately true. 
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1.6 / .  

f / Separation of" 
1"5 CoKa I . , - . ~  (CuK~() 

1"3 / ' i '  
/ , / i  Dispersion within 

/ /  I •1 or O~ 2 (CuK.)  
1"2 ~ / ] /  .'""' 

/ 
/ /  . . . . . .  " I 

. . . . . .  ......... 
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Fig.  19. Calcula ted dependence  of I~/I~ u p o n  0 due  to spectral  
dispers ion effects for Cu K a  and  Mo K a  radiat ions .  Wz= 
0"31 °, Wc and  Wrn small  w i th  respect  to Wx. 

Separation of the K s  doublet components produces 
little loss in peak intensity at small Bragg angles 
because of the extensive overlap of the rather trap- 
ezoidal Kc~l and Kay. profiles. When, however, the 
degree of overlap diminishes with increasing O, the 
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w, 

Fig. 20. Calcula ted dependence  of I~/lp u p o n  A20(ccl,2)/W x 
for Cu Ka and  Mo K x  radia t ions .  Wc and  Wm small  wi th  
respect  to  Wx. 

loss in Ip increases rapidly to a limiting value of about 
33% for complete resolution. This effect is portrayed 
for Cu Ka  radiation and the above-mentioned ex- 
perimental constants in Fig. 19 by the curve labeled 
'separation of a l - a 2 ' .  The over-all increase in Ii/Ip 
to be expected is given by the product of ordinates 
of these two spectral dispersion curves, which is the 
solid curve designated 'Cu Ka'. The curve marked 
'Mo Ka '  was derived by the same procedure using the 
spectral dispersion parameters characteristic of MoKa 
radiation. By expressing Ii/Ip as a function of the 
ratio of the separation of the K~ doublet to the X-ray 
source width, we can with only minor approximations 
arrive at a curve which is general for any given radia- 
tion (Fig. 20) provided Wc and Wm are small with 
respect to Wx. One universal curve would be applicable 
to all radiations were it not tha t  the ratio of spectral 
width W2 to angular separation of .Kal and Ka.,, 
differs somewhat from one target element to another. 

Fig. 21 shows the quality of agreement between the 
calculated curve for Cu/¢~ radiation and the ex- 
perimental curves obtained from crystals of four 
compounds. The observed displacements of the curves 
of the organo-silicon crystals to the left are due to 
the presence of more mosaic character, while the shift 
of the quartz curve to the right is to be expected for 
less mosaic character, than tha t  incorporated in the 
calculated curve. 

The present results demonstrate plainly tha t  only 
in a very limited low-0 region can the intensity 
diffracted by a s tat ionary crystal, Ip, be regarded as 
approximately proportional to the integrated intensity, 
Ii  (refer to Figs. 19 and 21). Furthermore, because of 
variations in mosaic character from one crystal to 
another it is not possible to rely upon any particular 
calculated curve of I~/I~ for correcting peak intensities 
to the equivalent integrated intensities, at least when 
highly accurate intensities are required. A more 
dependable approach is to plot a curve of I~/I~, versus 
20 from 20 or 30 experimental Ii  and Iv values for 
a given crystal, after which the great bulk of the data  
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Fig. 21. Comparison of calculated and experimental curves 
of Ii/Ip for Cu Ka  radiation. (a) Calculated, (b) a-quartz, 
(c) (C6H5)4Si, (d) cyclic tetramer [(CH3)2SiNH] 4, (e) 
(C6H5)2SiCH2CH2Si(C6Hs)2. 

in the form of Iv's can be corrected to the equivalent  
Ii 's  wi th  more confidence. If  there is pronounced 
anisotropy of the mosaic character  of a given crystal,  
the  applicat ion of this method becomes more difficult, 
bu t  in the authors '  experience such cases are the 
exception ra ther  t han  the rule. On the other hand,  
they  have commonly observed a monotonic decrease 
in the diffracting power of a crystal  upon prolonged 
exposure to the X-ray  beam, sometimes accompanied 
by  a shift  of the Ii /Iv cal ibrat ion curve. 
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the X-ray source with respect to the equatorial  plane 
of the goniometer. Since for a vert ical  displacement  
of this  k ind  C=t/2Rx (see Appendix  C), exper imenta l  
values of A Z0 and  sin 0o for a crystal  enable one to 
compute the vert ical  displacement  t required to br ing 
the source into the  equatorial  plane of the goniometer. 

Any  residual displacements  of the X- ray  source or 
crystal  from the  equatorial  plane can be dealt  wi th  
by  means  of a cal ibrat ion curve based on equat ion (12). 
The constant  C is first evaluated from exper imenta l  
A 2;0 and  sin 00 values, after which the required mis- 
sett ing in 2;0 can be deduced for any  Bragg angle. 
The 2; profile is re la t ively  broad and  flat-topped, and  
in practice the cal ibrat ion shows l i t t le change with 
the passage of t ime;  hence any  necessary corrections 
are easily effected. 

Serious errors in the measurement  of intensit ies can 
result  from failure to reckon wi th  uncertaint ies  in the  
knowledge of the lat t ice constants. For s implici ty  of 
i l lustrat ion we consider the case of an  orthogonal uni t  
cell wherein the reciprocal latt ice constants  are known 
with the same relat ive accuracy, 6a*/a*. Then 

and  
sin 0 =  1-2d* = ½ 2 [(ha*) 2 + (kb*) 2 + (lc*)2] ½ 

~0 = (3½ t an  0)ba*/a* . (13) 

Both pract ical  experience and  a s tudy  of theoretical  
reflection profiles (for example  see Fig. 12) show tha t  

• for Wx ~ 0"3 ° acceptable accuracy in Ip is obta inable  
only if 60 does not  exceed approx imate ly  0"10 °. 
This conclusion applies to the sett ing of the receiver 
direct ly  at  the calculated 200 for each reflection 
wi thout  resorting to any  empir ical  procedure for 
refining the 20 and  ~0 settings. 

7. Effects  of e r r o r s  in  20, ¢p, ~, 
and lattice constants  

Errors in a l ignment  of the diffractometer  t end  to 
result  in approx imate ly  constant  errors in 20o(hkl) 
throughout  the  20 scale because of displacement  of 
the 0 ° point  on the  goniometer scale from the  un- 
deviated beam direction. However, ~0 depends upon 
the largely accidental  az imuth  of the crystal  as 
mounted  on the goniometer head;  therefore i t  must  
be de termined exper imenta l ly  for any  given mount .  
Al though the cal ibrat ion of q0 and  A 200 is in principle 
invar ian t  for a given crystal  mount  and a l ignment  of 
the apparatus ,  i t  is the  authors '  experience tha t  these 
'constants '  drif t  wi th  the  passage of t ime and require 
periodic rechecking. Vertical displacements  of the 
center of the crystal  or X-ray  source from the principal  
plane of the  diffractometer  produce cal ibrat ion errors 
in 2;0. In  Appendix  C it is shown tha t  such errors 
take the form 

z] 2;0 = C/sin 00, (12) 

a result  which can be easily verified experimental ly .  
After the pre l iminary  a l ignment  of the diffractometer,  
equat ion (12) can be used to perfect the a l ignment  of 

Table 1. Values of 50 in degrees for a number 
of values of 0 and ~a*/a* 

(Orthogonal unit cell with all three lattice constants known 
with the same relative accuracy) 

0 0.010 0-005 

5 ° 0.087 0.043 
lO 0:i75 .... :~ . . . . . . .  o: .o.s .  ~ ... .  

20 0-361 0.181 
30 0.573 0.287 
45 0.992 0.496 
60 1.719 0.859 
75 3.704 1.852 

6a* /a* 
A 

0-001 0.0005 0.0001 

0.009 0.004 0.001 
0.018 0.009 0.002 
0.036 0.018 0.004 
0.057 0-029 0.006 
0.099 0-050 0.010 

....... 0:i72 ..... i 0.086 0.017 
. . . . . . . . . . . . . . .  

0-370 0.185 : 0.037 

Table 1 gives values of 60 in degrees corresponding 
to five grades of accuracy in the knowledge of (Sa*/a* 
and  for a range of values of 0. On the basis of the 
criterion tha t  (~0 < 0"10 ° for in tens i ty  measurements  
of acceptable accuracy, one must  not work in the 
region below and  to the  left of the broken line. We 
m a y  observe tha t  in present-day s t ructural  investiga- 
tions of acceptable accuracy (Sa*/a* falls in the  range 
0.003 to 0.0005, which is clearly not good enough to 
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yield reliable intensities at the larger Bragg angles. 
The conclusions apply specifically to Ip measurements 
and somewhat less rigorously to Ii  measurements. 
For non-orthogonal crystal systems the reliability of 
the intensity measurements is even more sensitively 
dependent upon the accuracy with which the inter- 
axial angles are known. For the foregoing reasons it 
is evident that  designers of automatic diffractometers 
must deal effectively with timewise drifts in the 
instrumental calibrations ~0 and A20o, while at  the 
same time users must provide highly accurate lattice 
constants. 

8. Practical  r ecommendat ions :  20- Scan technique 
for m e a s u r i n g  integrated intensit ies  

Initial choice of instrumental conditions 
(1) Determine at  least approximately the ratio 

Rz/t~z of the apparatus. As explained in Appendix D, 
there are some advantages in making this ratio unity. 

(2) As a general rule the take-off angle of the X-ray 
beam may be chosen so tha t  the projected focal spot 
is approximately equidimensional. This is about 4 ° 
for conventional rectangular focal spots viewed 
longitudinally. The equivalent vertical and horizontal 
angular dimensions, a~ and c~(=7~), may be deter- 
mined from a pinhole image. 

A wider projected focal spot (larger take-off angle) 
has both advantages and disadvantages, which must 
be weighed in any particular case. The advantages 
include: (a) the 20 region of approximate propor- 
t ionality of I~ and Ip is extended (Figs. 19 and 21), 
(b) less precision is required in the setting of 0 in 
order to obtain acceptable accuracy in Ip (Section 7 
and Table 1), and (c) the minimum angle of resolution 
of the Ka  doublet is increased. 

The disadvantages are: (a) the peak intensity is 
reduced, (b) the scan range must be increased, and 
(c) a larger receiving aperture is needed. 

(3) Determine the limiting crystal dimension, 
lc= ~,cRz, as governed not only by the linear absorp- 
tion coefficient but also by the values of FR, Fz, Fro, 
and R~, Rz. For ordinary experimental conditions 
refer to equation (D.9) and Fig. 34. 

(4) If FR is adjustable, it should be made sufficiently 
large to allow for possible mosaicity of the crystal 
(for example, let Fm= 0.45 °) as illustrated in Fig. 34. 
0rdin~rily (~R)mi~, the minimum receiving aperture 
width, should not be less than 2 ° . For exceptionally 
mosaic crystals it may be necessary to construct a 
receiving collimator with an abnormally large aper- 
ture, which, of course, must be employed in conjunc- 
tion with a counter window of the same or larger 
angular aperture. In  extreme cases it may be neces- 
sary to employ the co-scan technique in order to 
obviate the aperture difficulty (see equations (D.10) 
and (D.11)). Practical techniques for measuring the 
mosaic spread of a crystal are described by Furnas 
(1957, pp. 138-9). 

(5) If 7R and Rx/Rz of the apparatus are invariant,  
it  may be necessary to more sharply restrict 7c and yx 
according to the limitations established by equation 
(D.9). 

(6) Other considerations being equal, it is ad- 
vantageous to employ a short wavelength in order to 
avoid making intensity measurements in the high 20 
region where scan range corrections become unreliable. 
For a more extensive t reatment  of this subject see 
Furnas, 1957, pp. 26-27. 

Technique of measurement 
(1) At best, corrections for intensity losses due to 

finite scan range are only approximate. Therefore, 
when the diffraction pat tern is almost entirely con- 
fined to the region 20 < 90 °, either by virtue of the 
choice of wavelength or the thermal vibrational 
amplitudes of the atoms, or both, it can be seen from 
Figs. 17 and 18 that  the correction can be neglected 
with impunity provided the scan ranges employed are 
not too small. 

(2) At the lower Bragg angles, and particularly 
when using a radiation of short wavelength such as 
Ag Ks  or Mo Ks, it is necessary to make a preliminary 
map of the background surrounding each reflection 
in order to avoid serious errors resulting from an 
unwise choice of the scan range and locations of back- 
ground measurements. In  this connection refer again 
to Figs. 6, 7 and 9. At very small O's the determination 
of the background becomes difficult because the 
characteristic background profile due to general 
radiation contracts to such an extent on the 20 scale 
as to largely disappear within the main reflection 
profile, the width of which is principally due to the 
X-ray source (see Fig. 13). Under these circumstances 
the authors have found the Ii/Ip curve of the crystal 
in question to be invaluable for the purpose of reveal- 
ing an incorrect determination of the background by 
virtue of the fact that  the reflection concerned tends 
to deviate from the established curve. 

A P P E N D I X  A 

Diffraction of m o n o c h r o m a t i c  X-rays  from a point 
source by a s m a l l  perfect crystal  

We seek the answers to four main questions. When 
the crystal rotates through its entire angular range 
of reflection - /~  to +/~, 

(1) Does diffraction occur from the entire volume 
of the crystal ? 

(2) What  is the angular retardation, A/~, of dif- 
fraction from non-equatorial sections of the 
crystal ? 

(3) What  is the intensity profile, I(/~)c, of the dif- 
fracted radiation ? 

(4) What is the range of solid angle in which dif- 
fracted rays occur ? 
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We assume the following crystal model" a cylinder 
of radius re and length l, t ransparent  to the incident 
X-rays of wavelength 20, perfect (no mosaic character). 
The crystal C is uniformly irradiated with X-rays of 
wavelength 20 originating from the point source X 
(Fig. 22). If unit volume of the crystal diffracts 
X-rays from planes (hkl) with intensity I0, the inte- 
grated intensity may be defined by" 

I(hkl)~= Io I l l dxdydz 

=IoV  , 

V being the volume of the crystal. 

', ~B 

x 

Fig. 22. 

Consider first diffraction from an equatorial section 
of the crystal as shown in Fig. 22. When the crystal 
is rotated to some azimuthal angle w0 about the 
cylindrical axis, the central ray CX makes the Bragg 
angle with the planes (hkl). If now the crystal is 
turned slightly to the angle fl, the incident ray  X A B  
fulfills the Bragg condition with these same planes 
but along the line AB,  generating a plane sheaf of 
diffracted rays of total intensity I(fl)e as indicated 
by the hatched zone of the figure. The intensity is 
proportional to the length of the chord AB,  

(~)c= 2k(r~- x2)~ 
= 2 k ( r ~ -  R2fl 2)½. 

For the central ray  /3=0 and I =  Imax, so tha t  

I (0)~ = Imax = 2kr~. 

Therefore we obtain for the profile of the diffracted 
rays" 

I (/3)c = Imax [1 -(Rx/3/rc)2] ½ • (A.1) 

Finite diffracted intensity is obtained between the 
crystal orientation limits /3 = + r~/Rx radians. During 

the rotation of the crystal through this angular range, 
the diffracted rays extend over an interval on the 20 
scale which is a function of 20 and the relative sizes 
of Rx, Rz, and re. However this interval is at a max- 
imum when 20 approaches zero. From Fig. 23 it can 
be seen tha t  its maximum extent is then 

Receiving 

max  

x 
Fig. 23. 

y 

c P 

x N 

J "  ~ X  

j n  

Fig. 24. 



996 M E A S U R E M E N T S  WITI-I T H E  T H R E E - C I R C L E  C O U N T E R  D I F F R A C T O M E T E R  

/120----(2r~/Rx). ([Rx + R~]/Rz)= 2rc([Rx + Rz]/ ( RzR~) ) . 

(A.2) 
I a  concluding this t reatment  of diffraction by the 
equatorial section of the crystal, we may make the 
observation tha t  as the crystal turns through its 
angular reflecting range, -rc/R~ to +rc/Rx radians, 
the locus of reflecting points, A B ,  moves across the 
entire cross-section of the crystal (Fig. 22). Hence, 
all points in this section contribute to the integrated 
reflection intensity. 

We now consider diffraction from the planes (hkl) 
at points in the crystal removed from the equatorial 
section. Referring to Figs. 22 and 24, we see tha t  
when the incident equatorial ray  X C  fulfills the Bragg 
condition, the equivalent point C" at height y does 
not diffract. However, the neighboring point C' at 
height y does diffract since the ray  XC'  is incident 
upon the planes (hkl) at the Bragg angle. Thus dif- 
fraction at  height y occurs simultaneously with dif- 
fraction on the equator except tha t  there is a linear 
displacement of C'C". This displacement is equivalent 
to an angular retardation/1fl  which can be expressed 
in terms of the experimental parameters y, Rx, and 0. 
I t  is useful to employ an approximdte expression for 
the sagitta, CC'" --- C'C", 

CC'"=-y2/(2CP) , (A.3) 

which is good to within 0.2% for y/CP<O.09.  The 
component of CC'" projected on a horizontal line mn 
(see Fig. 24, inset) normal to X C  is 

CC'" sin O=y 2 sin O/(2CP) , 

and its angular equivalent subtended at X is 

/1 fl = y~ sin O/(2R~Rx cos 0) 
= ½(y/Rx) 9 tan  0 radians . (A.4) 

Thus we have demonstrated tha t  diffraction from 
points in a crystal at height y is displaced, or retarded, 
by the angle /1fl with respect to diffraction from the 
corresponding points in the equatorial section. If 
reference is now made to Fig. 25, when diffraction 
occurs along the line E F  in the equatorial section, 
diffraction is taking place simultaneously along some 
line E ' F '  a t  mean height y, and in fact diffraction is 
occurring simultaneously throughout the two-dimen- 
sional region EE'F'.F. Finally it follows that  during 
rotation of the crystal through its angular range of 
diffraction, this diffracting zone sweeps across the 
entire volume of the crystal. Thus we have answered 
questions (1) and (2) at the beginning of this appendix. 

Questions (3) and (4) have been answered only for 
the equatorial section. The answer to the vertical 
aspect of question (4) can be easily given by a con- 
sideration of Fig. 26. An incident equatorial ray X C  
generates a diffracted ray  CZ. Since y is very small 
with respect to Rz we can, for the present purpose, 
neglect the displacement of the diffracting point C' 
from its true position (C"C' of Fig. 24) and likewise 

F t 

I f --i--- 

c/  

X 

Fig. 25. 

Q' 

C' 

Q 

2 x 

Fig. 26. 

regard the terminus of the non-equatorial diffracted 
ray  as falling at Z'. To a very good approximation, 
then 

Z Z ' = y / R x . ( R x + R z )  , 

and the angle subtended at  C is 

a=ZZ ' /Rz=y( (R~+Rz) / (RxRz) )  , (A.5) 

which is of the same form as expression (A.2). If h~ 
is the over-all height of the crystal, the maximum 
vertical angular extent of the diffracted radiation is 
then, 

a~=h~((Rz+ Rz)/(RzRz)).  (A-6) 

Equations (A.2) and (A.6) specify the minimum 
horizontal and vertical dimensions of the receiving 
aperture required to encompass the entire diffracted 
beam from a small perfect crystal of radius rc and 
length hc when the receiver is kept stationary. Of 
course the angular divergence of the diffracted rays 
due to experimental factors other than  crystal size 
must also be taken into account in choosing the dimen- 
sions of the receiving aperture (see Appendix D). 
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We must now evaluate the diffraction profile for 
the entire volume of the crystal. For a circular section 
on the equator it was found to be given by equation 
(A.1). To include the contributions from sections at 
all heights we nee2. to integrate over all values of y, 
bearing in mind the variation in retardation angle, 
Aft, with y, or therefore: 

t+½ 
hc 

Z ( f l -  .4 flu)cdy. (A.7) I (/7). = ,,-½h~ 

If ½hc is very small with respect to R, the non- 
equatorial sections may be regarded for practical 
purposes as circular (even though they are in fact 
elliptical). Hence, we may substitute in (A-7) ex- 
pression (A.1) for I ( f l - / l i ly)c:  

i 
+½hc  

i (# ) ,= I , ,~  { t - rR~ ( # - ~  #y)/rd~}{dy. (A.S) 
t'--~hc 

We must now determine the magnitude of the 
retardations, /I flu, of the non-equatorial contributions 
in equation (1.8). Let us evaluate expression (A.4) 
for a representative range of the parameters y, Rz, 
and 0. The numerical results are tabulated in Table 2 
for Rz=10  cm., 0 = 3 0  ° , 45 ° , 60 ° , and 80 ° , and y 
ranging from 0.005 to 0.03 cm. This maximum y value 
corresponds to a crystal of 0-6 mm. over-all height. 
Since the present analysis applies only to an apparatus 
in which the X-ray source dimensions are large with 
respect to the crystal dimensions, and since actual 
source heights seldom exceed 1.0 mm., we may 
conclude tha t  ymax= 0"03 cm. represents an unusually 
large value of the crystal height. I t  will be seen from 
Table 2 that  only for large y's and O's does the retarda- 
tion exceed 0-001 °. For a more typical y value of 
0.015 and somewhat lower Bragg angles it  is seen tha t  
Aft is of the order of 0-0001 ° or less. The significance 
of these results is more apparent when we consider 
the equivalent fractional retardations. Assigning to 
the crystal the representative angular width of 0.1 °, 
we find tha t  only at very large values of y and 0 
does Lift exceed one-hundredth of this figure. This 
means tha t  except under very extreme experimental 
conditions /lflu in (A.8) may be neglected and the 
intensity profile of the cylindrical crystal regarded as 
not sensibly different from tha t  of its equatorial 
section, equation (A.1). 

Table 2. Values of the retardation angle /1 fl in degrees 
as a function of y and 0 

(Rx= 10 cm.) 

0 (degrees) 

y (cm.) r 30 45 60 80 

0-005 0.000004 0.00001 0.00002 0.00004 
0.010 0.00002 0.00003 0.00006 0.00016 
0.015 0.00004 0.00006 0.00014 0.00037 
0.020 0-00007 0.00011 0.00026 0.00065 
0.025 0"00010 0.00018 0.00040 0.00102 
0"030 0.00015 0-00026 0.00058 0.00146 

A P P E N D I X  B 

Diffraction of m o n o c h r o m a t i c  X - r a y s  f r o m  a 
source of finite d i m e n s i o n s  by a vanishinl~ly smal l ,  

perfect  crystal  

As in Appendix A we are interested in the answers 
to four main questions. When the crystal rotates 
through its entire angular range of reflection - f l  
to +#, 

(1) Does the crystal diffract X-rays originating at  
all points on the source ? 

(2) What  is the angular retardation, Aft, of dif- 
fraction generated by rays from non-equatorial 
sections of the source ? 

(3) What  is the intensity profile, I(fl)x, of the 
diffracted radiation ? 

(4) What  is the range of solid angle in which dif- 
fracted rays occur ? 

Because of the close parallelism between the geometry 
pertinent to this appendix and tha t  of Appendix A, 
one is inclined to predict without formal proof tha t  
the answers to these four questions will likewise be 
equivalent. This, in fact, turns out to be the case, 
but  still a minimal systematic analysis will be 
presented in order to guard against possible failure 
of some aspects of the analogy. 

, .11¢" . . . . .  

,' / / / ;  i 

/ J f  / 

~'----~ . . . . . . . . . . . . .  1-- "! 

\ 

L ~ o o  "[ I \ . . '" 
f 1 ~ r f , " l  
. h~ -~Wp" . ' r  -~ Wo 
. . . . . . . . . . . . . .  -" ½w½ 

Fig. 27. 

= Z  

An examination of the horizontal intensity profiles 
of the focal spots of good-quality diffraction tubes 
shows tha t  they resemble closely somewhat rounded 
regular trapezoids. We therefore adopt the idealized 
intensity profile of the projected source shown in 
Fig. 27, a three-dimensional figure with two mutual ly 
perpendicular trapezoidal sections. Although the 
vertical section is presumed to be trapezoidal, its 
actual shape is, in fact, of no consequence in the 
following discussion. Basing our definitions of the 
vertical and horizontal directions upon the convention 
tha t  the plane of diffraction (equatorial plane) defines 
the horizontal plane of the apparatus, the vertical 
trapezoidal section has full peak and base lengths of 
hp and h0 respectively and the horizontal section peak 
and base lengths of wv and w0 respectively. The angles 
subtended at  the crystal by these horizontal lengths 
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are 2tip and 2#0 respectively. We may also define 
the width at half-maximum intensity, w½, and its 
~ngul~r equivalent, 2#½= Wx, The 'best' trapezoids 
fitted to the horizontal source profiles of actual X-ray 
tubes were found to have approximate dimensional 
proportions as follows: tip~rio = 0.60 and fl½/flo = 0.80. 

In the following the reader is asked to refer to 
Figs. 27 and 28. As the crystal rotates through its 
reflecting position, diffraction takes place from the 
planes (hkl) successively using incident rays emitted 
along the equatorial line -½w0 to +½w0 on the 
projected focal spot. The profile of the diffracted rays, 
I(fl)x, will be an image of the equatorial section of the 
source. We next consider diffraction from the planes 

(hkl) due to rays emitted from non-equatorial points 
on the source. At the same time as the central 
equatorial ray XC fulfills the Bragg condition, the 
non-equatorial ray X'C from a point at the approx- 
imate height h will likewise satisfy the Bragg relation. 
As the crystal rotates through its reflecting position, 
rays emitted by successive points along a horizontal 
path at this same height on the source will produce 
diffracted rays. I t  can be seen from Fig. 28 that  
these observations are only special cases of diffraction 
by the crystal at the point C due to incident rays 
originating anywhere on the surface of a cone with 
semi-apex angle ~ and apex C. As the crystal rotates, 
this cone turns with it and the locus of intersection 
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of the cone and  the source sweeps across the latter.  
Thus it  has been demonst ra ted  tha t  the crystal  will 
diffract  X-rays  orighmting at all points on the source 
(question (1)). 

We next  evaluate  the difference in azimuth,  or 
equatorial  angular  component,  of the two incident  
rays  X C  and X 'C ,  for which we m a y  refer to Fig. 28. 
An examinat ion  of the geometry of this  figure shows 
tha t  i t  is s imilar  to tha t  of Fig. 24 if we interchange 
P for N,  C for X ,  C' for X' ,  etc. Therefore the 
equatorial  angular  component  is given by an  equat ion 
of the same form as (A.4) : 

A fl = l(h/Rx)2 t an  0 r ad i ans .  (B.1) 

I t  also follows tha t  the angular  re tardat ion of diffrac- 
t ion due to non-equatorial  zones of the X-ray  source 
has the same properties as those of the re tardat ion of 
diffraction by the non-equatorial  sections of the crystal  
(Appendix A). 

Numerica l  values of the re tardat ion  angle A fl will, 
of course, be the same as those given in Table 2. 
However, since the full  angular  width  of the focal 
spot is of the order of 2fl0=0.6 ° ra ther  t han  0.10 ° 
as in the case of the crystal  cross-section, the  fractional 
re tardat ion  angles will be much  smaller  in the present 
case. So we conclude immedia te ly  tha t  the re tardat ion  
of diffraction by  the non-equatorial  rays  is negligible 
for pract ical  purposes, and, therefore, the in tens i ty  
profile of the source measured as a funct ion of fl by  
a receiver of sufficient aperture is the same as the 
equatorial  profile.* 

We have now to specify the horizontal  and  vert ical  
angular  ranges wi th in  which diffracted rays occur. 
If the over-all width  of the source profile is w0, as for 
the idealized source profile of Fig. 27, then  the 
horizontal  angular  range subtended at  the crystal  is 
wo/Rz and the range subtended by its diffraction 
image will be the same. Referring to Figs. 27 and 28, 
in the same manner ,  if the  over-all height  of the 
source is ho, the vert ical  angular  range of the incident  
rays  is ho/Rz and tha t  of the diffracted rays will be 
equal:  

2 Z Z ' / R z = h o / R x  . (B.2) 

These angular  ranges mus t  be used in the process 
of calculating min imal  receiver apertures (refer to 
Appendix  D). 

APPENDIX C 

Relationship among A Z, O, 
and the receiving aperture height 

As shown in Fig. 29, when planes (hkl) are oriented 
ver t ical ly  so tha t  the incident  equatorial  r ay  X C  

* Actually this statement is not completely valid because 
some distortion is introduced into the 'ideal' horizontal profile 
as a result of the non-rectangular profile of vertical sections 
of the X-ray source. However the degree of distortion will 
be small and of little practical consequence. 

satisfies the Bragg relation, a diffracted ray  is gener- 
a ted  in the direction C T  in the equatorial  plane. 
If  the crystal  is t i l tcd about  the X axis from the 
calculated angle Z0 by  an  amount  A X, as indicated 
in the drawing, an incident  ray X ' " C  from the equator 
of the X-ray  source now satisfies the Bragg relat ion 
with the same planes, generat ing a diffracted ray  in 
the direction C T " .  Let Z " Z ' "  be the elevation of this 
diffracted ray  at the receiving aperture, which is a 
distance Rz from the crystal.  Wi th  sufficient exactness 
the angular  displacement  of the diffracted r ay  is then  
a = Z " Z ' " / R z .  From Fig. 29 it  can be seen tha t  with 
the planes (hkl) t i l ted to the angle A Z, incident  X-rays  
lying anywhere  on the surface of a cone of semi-apex 
angle ~ and te rmina t ing  at  C will sat isfy the Bragg 
relat ion and generate diffracted rays. 

(hkl) 

0 

\ x 

"]-f C rt ,.,,,,, 
X'xx" x.// 
n7 

X 

X "  

Fig. 29. 

From an inspection of the figure we see tha t  

t an  A g = ( N N ' / C N ) =  ( N N ' / R z  sin 0) .  (C.1) 

Fur thermore  

NN'= X'"N'(T'"T"/X'"T")= ½-(T'"T") , 

and to a sufficiently good approximation for small 
values of A Z: 

T'"T" Z,,,Z,,I~, t~  k.,.t, Xl . t t ,  z !  . 

I t  follows tha t  

1 t i t  l /  t an  A Z = 2 Z Z (R~/R~). 1/(R~ sin 0) 
~ rZ.ttt t Z t t / [  ][~ - 2~ ~ I~°~ sin O) 

= ~/(2 sin 0) ,  

where a is the angular  displacement  of the diffracted 
ray  from the equatorial  plane (compare Furnas ,  1957, 
p. 80). Since in practice A X mus t  of necessity be small,  
we make negligible error in saying 

= 2A Z sin 0 .  (C-2) 
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Since c~,~ may be regarded as defined by one-half 
the receiving aperture height, (C-2) is the desired 
equation relating this parameter to A Z and 0. I t  
states tha t  for a given receiving aperture the width 
of the Z profile of a diffracted beam will vary  as 
1/sin 0. 

The X-ray source height likewise establishes a 
limiting value of A:~. The analysis takes a form 
identical with tha t  just outlined for the receiver 
height, so that  

az=2/I Z sin 0 , 

c¢= being one-half the angular equivalent of the source 
height. The limiting value of A g as governed by the 
combined effect of the receiver, source, and mosaic 
range of the crystal, 7~, is therefore 

ZJZmax=((ar-Fax)/2sinO)+½ym , (C.3) 

where ar is one-half the angular equivalent of the 
receiving aperture height. In actual practice a= is 
much smaller than c~, so tha t  the receiving aperture 
height plays the dominant role unless the mosaic 
spread of the crystal is large. We may also note tha t  
~m = y~ sin 0. 

I t  is of interest to evaluate the angular equatorial 
displacement of the incident ray, XC, corresponding 
to a given angular displacement of the diffracted ray 
from the equatorial plane. :Because of the smallness 
of practicable values of /1 Z, we may neglect the non- 
cop!anarity of the two circles of radius N X = N ' X "  
with centers at N and N',  as suggested by the 
geometry of Fig. 29. The linear displacement along 
the line X T  is XX ' " .  By the sagitta approximation 
and other geometrical considerations discussed above, 
we make little error in saying: 

X X ' " = ( N N ' ) 2 / 2 N X = ( ½ . Z ' " Z  ''. (Rx/Rz))2/(2Rz cos 0) 
= ~ R = / ( 8  cos 0). 

Referring to Fig. 29 and Fig. 29 (inset), we see tha t  
the angular equivalent of the displacement X X ' "  is" 

flxx,,, = X X ' "  sin O/Rx = ~ 2  tan 0 .  (C'4) 

Supposing tha t  a = l  °, for example, we find that  
flxx,,, = 0-0022 tan 0 degrees. This shows tha t  for 
experimentally meaningful values of a the horizontal 
displacement of the incident ray  from the midpoint 
of the focal spot is small compared with the over-all 
angular width of the focal spot itself, which is of the 
order of 0-3-0.6 ° for the technique under considera- 
tion. 

Another practical problem can be answered in 
terms of the geometry of Figs. 29 and 30. If the 
midpoint of the X-ray source is displaced from the 
equatorial plane of the dfffractometer, what will be 
the resulting displacement of the intensity profile on 
the Z scale ? With reference to Fig. 30, let X C T  be 
the equatorial plane and let the incident ray  XC from 
the midpoint X of the source produce a diffracted 
ray CT from planes (hkl) of a point crystal at  C. 

CN is the normal to the diffracting planes. The full 
vertical height of the receiving aperture is Z]Z~, 
equivalent to the angular aperture ~ =Z±Z~Rz. 

(hk/) 

i t 

Ti ~t 

T' 
t 

T' X '  
1- I N 1 

I- R.sin 8 .{ 1 

Z' 

C T 

F i g .  30. 

Suppose now the X-ray source is displaced vertically 
by the amount X X '  =t, which is very small in com- 
parison with R= (Fig. 30). We wish to determine the 
angular displacement of the midpoint of the Z intensity 
profile. The upper and lower limits of g are deter- 
mined respectively by the limits Z1 and Z~ of the 
receiving aperture. As seen from the figure, with 
reference to the midpoint X'  of the displaced source 
these limits correspond to the diffracted rays CT1 and 
CT~ and to the plane normals CN1 and CN~ respec- 
tively. The equivalent values of A g are A Z + and/1Z- ,  
and the angular displacement of the midpoint of the 
Z profile from the equatorial section is then 

( ~ x ) : ½ ( z z + - ~ z - ) .  (c.5) 

We now proceed to evaluate J Z + and z] Z-. With 
reference to :Fig. 30, since t is very small relative 
to R:, we may to a very good approximation regard 
X'CT'  as the temporary (equatorial) plane of reference 
and employ the geometry of Fig. 29 and equation (C.2) 
to express the angular displacements of the diffracted 
rays CT1 and CT~ from the reference ray CT'. For 
ray CT1 we obtain 

½av-- at=2 (/1Z+-- ¢lZo) sin 0,  (C-6) 

and for ray  CT~ 

½av+at=2(Zlx-+Azo) sin 0.  (C.7) 

Subtraction of (C-7) from (C.6) gives 

- 2 ~ t = 2 ( A z + - A z - - 2 A z o )  sin 0 , 
and then 
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(A Z)  = ½ (A Z + -  A Z-) = - (°¢t/( 2 sin 0)) -b A Zo. 
But 

A Zo = t/Rz sin 0 = at/sin 0,  
so that  

( A z ) = ~ t / ( 2 s i n O ) = t / ( 2 R x s i n O ) .  (C.8) 

We note from equation (C.8) that  the signs of 
(A Z) and t are the same. Thus a positive (downward) 
displacement of the X-ray source results in a positive 
value of <Az>. 

A P P E N D I X  D 

D i m e n s i o n s  of the  r e c e i v i n g  a p e r t u r e  

1. Vertical dimensions 

The minimal receiving aperture dimension is deter- 
mined by the sum of the over-all vertical divergences 
of the diffracted rays due to crystal height (a~), 
X-ray source height (~) ,  and crystal mosaicity (~n)" 

v ~ ( D . 1 )  ~v = ~ + ~ + ~m • 

In terms of am of Appendix C we note that  ~m-~ -2c~m. 
Substituting from equations (A.6) and (B.2) and 
employing the expression for am given in Appendix C, 
we may write 

~ : h ~ ( ( R x + R z ) / ( R ~ R ~ ) ) + h x / R ~ + 2 y m  sin 0,  (D.2) 

wherein he and h~ represent the over-all heights of 
the crystal and focal spot respectively. For a set of 
fixed instrumental parameters the maximum crystal 
height for a crystal of over-all mosaic range ~'m is then 

(hc)max = (~v_  (hx /Rz ) -  2 rm sin 0)(R~R~/(Rx + Rz)) .  
(D.3) 

For representative parameters, ~ -- 2-22 °, hx = 0.1 cm., 
Rx=R~-=- 14.55 cm., ym =0"4 °, 0--30°: 

(hc)m~x=0"181 cm. 

I t  may be remarked, in conclusion, that  any such 
calculated maximum value of the crystal height is 
valid only for perfect alignment in a vertical sense of 
the centers of the crystal, receiving collimator, and 
X-ray source. Any degree of misalignment will reduce 
the effective size of (h~)max. 

2. Horizontal dimensions 

We shall first devote our attention to the 20-scan 
technique. From the mathematical development in- 
volved it will then be easy to deduce an expression 
for the ~o-scan technique, which is geometrically the 
simpler of the two. 

Referring to Fig. 31, we define the locations of the 
diffracted rays and receiving aperture in terms of 
A 20 units on the goniometer scale, the origin 200 being 
the calculated angle of diffraction for planes (hkl) and 
wavelength ~0. Likewise the rotation of the crystal 
from its calculated angle of diffraction, COo, will be ex- 
pressed in fl units (refer to the beginning of section 5). 

As illustrated in Fig. 31, when the crystal is turned 
through its entire angular range of reflection for X-rays 
of wavelength ;to from a source of width wx, the 
diffracted rays move from a' to b'. In general, (1) rays 
a' and b' do not represent the minimum and maximum 
angles at which diffracted rays appear during this 
rotation of the crystal, and (2) the rays diffracted at 
any given instant comprise a bundle which occupies 
a finite angular range, A20, in space. 

M w,~ ---4 

Fig. 31. 

In the following treatment we shall define the 
angular locations of the leading and trailing edges 
of the receiving aperture, L and T, and of the dif- 
fracted ray bundle, L' and T', as functions of ft. We 
again postulate that the receiver revolves through an 
angle 2fl when the crystal turns through an angle ft. 
We adopt the following nomenclature: 

yR = dR/R~ = angular width of the receiver sub- 
tended at the crystal. 

~c --- 2rc/Rx = angular diameter of (cylindrical) 
crystal subtended at the X-ray source. 

yx =- wx/R~ = angular width of X-ray source sub- 
tended at the crystal. 

~m = angular range of mosaicity of the crystal. 
~,~ = spectral dispersion on the 0 scale. 

When a cylindrical crystal of high transparency to 
X-rays is turned through its entire angular range of 
diffraction from planes (h/cl), the cumulative diffrac- 
tion effects are very nearly symmetrical about 
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/120=0  ° . During the diffraction process the crystal  
turns  through the angular  range ± ½ (yx + y~ + ye + 7~) 
and the receiver through the range 

+ (~'x+ ~m+ ye+  y~) • 

We first shall derive an expression for L'  as a 
function of ft. We init ially consider a perfect crystal  
of radius r~ i r radiated by  a point  source. We also 
postulate  t h a t  Rz :~R~ and tha t  re is very small with 

Fig. 32. 

respect to R~ and R~. Referring to Fig. 32, we see tha t  

L'=CD/R~+ ft.  

By geometric and tr igonometric equivalences 

CD=rc cos ((l-- t~) 

=re cos (½~- ~ - 2 0 + # )  

=re sin (~-b20-- fl) 
=re  (sin ~ cos ( 2 0 - f l ) + c o s  ~ sin ( 2 0 -  fl)} 

But  sin ~=R~fl/rc and cos ~ =  [1-(Rxfl/re)~]½, so t ha t  

CD--Rxfl  cos (20-fl)+(rc-R~x#2)½ sin ( 2 0 - f l ) .  

Making s tandard  tr igonometric subst i tut ions for 
cos ( 20 - f l )  and sin ( 2 0 -  fl), and replacing sin fl by  fl 
and cos fl by  1, we find for CD: 

CD = Rxfl [cos 20 + fl sin 20] 
9 O ~) + (rc-RYcfl)½ [sin 20 fl cos 20] . 

Final ly we obtain 

L'=(CD/R~)+ fl 
= ½7c((2fl/~e)+ (Rx/R~)A), 

wherein 

A = 2fl/~c [cos 20 + fl sin 20] 
+[1-(2fl/7c)2] ~- [ s i n 2 0 - f l c o s 2 0 ] .  (D-4) 

Continuing to assign to fl its par t icular  significance 
in the above development,  let us now also make allow- 
ance for the X- ray  source width,  mosaic spread oi the  
crystal,  and spectral dispersion. When the crystal  has 
tu rned  through the angle ½7~- l~'m~ + ~2~a~' + fl, the 
leading edge of the diffracted beam will have just  
reached the  position 

L'=½yx+~.+½ye((2fl /yc)+(Rx/Rz)A ) , (D-5) 

and the leading edge of the receiving aper ture  will 
be at  

L =  y x -  y,, + ~ +  2f l+  ½~,R. 

If we now let ½~x--zy,nl' + l . + f l  o ~ y ; .  be the crystal  
angle and A0 the value of A corresponding to the 
minimal separat ion of the leading edges of the receiving 
aper ture  and diffracted beam, we m a y  write:  

( L -  L')min = 1 1 R R ~ y R + } ~ x - 7 , n +  flo-½ye( x~ ~)Ao. (D'6) 

1 

2 8  ¸ 

X 

Fig. 33. 



LEROY E. ALEXANDER AND GORDON S. SMITH 1003 

Equation (D.6) represents the greatest constraint 
upon the experimental parameters ?a, Fz, ?~, 7c, and 
Rx/Rz only when R= >> Rz and over a very limited 
range of values of 7~ and 20. Acceptable values of 
the parameters correspond to L - L '  >_ 0, from which 
the proper receiving aperture width is 

?R > 2?m-7~-2flo+y~(R~/Rz)Ao. (D.7) 

Substitution of numerical quantities in (D.7) shows 
tha t  when R~/R~= 1 the maximum value of (?n)min 
obtains when fl0=0, while for Rx/Rz > 1, /% assumes 
values between 0 and ½?c. 

For the usual range of experimental conditions the 
greatest constraint upon the several experimental 
parameters is imposed by the minimum separation 
of the trailing edges of the diffracted rays and receiving 
aperture, T ' - T .  This situation occurs when the 
crystal has turned through its full range of diffraction 
and the diffracted ray  bundle has dwindled to rays 
at  the discrete angle 

T '=L ' =  ½7c[1 + (Rx/Rz) cos 20],  

as shown in Fig. 33 for the simplified case of a perfect 
crystal of radius rc irradiated by a point source. 
If we now add terms to allow for ?~, },~, and ?~ as 
in the prior derivation, the angle of the diffracted 
ray is 

T'=L'=½r~+~' +½7c[1 +(Rx/R~)cos 20] (D.8) 

when the trailing edge of the receiving aperture is at 

T=?~+?m+?~+y~-½?a , 
from which 

T ' -  T =  ½7R-½7x-?~-½7~[1- (R=/R~)  cos 20]. 

4 -  

3 

t . .  

~2 

o 

-1  
o 

z~(°) 

0"4 

0"2 

0"1 

- - - -  - - ' - ~ . 0 . 4  

- - -  ~ . . . .  0 " 2 " ' - . . .  

210 I I I I I I I I 
40 60 80 1 O0 120 140 150 1 80 

2 0 (degrees) 

Fig. 35. lV[inimum receiving aper ture  width ,  (?R)min, as a 
funct ion  of 20 for Rx/Rz=4, ?x----0"70 °, Fro----0"35 °, and  four  
values of Pc. Shown are results calculated with equat ion  
(D.7) (broken line) and  equat ion  (D.9) (solid line). 

Hence, acceptable values of the parameters now 
correspond to T ' - T  >_ 0, or 

7R >- 2?,n+?x+Yc[1-(Rx/Rz) cos 20].  (D.9) 

Fig. 34 depicts (TR)mtn) as a function of 20 for 
several values of 7c and ?m and for the representative 
instrumental constants ?z = 0.70 and R=/Rz = 1. These 
curves have been computed with the aid of equation 
(D.9) alone inasmuch as (D.7) takes precedence only 
within a limited range of experimental conditions 
when R~ >> Rz, as mentioned earlier. The applicability 
of (D.7) in the low-20 region is illustrated in Fig. 35 
where it is seen to give the larger values of (TR)mi, 
when Rz/Rz=4 and ?c>0"2 °. At intermediate and 
large 20's, however, (D-9) again specifies the larger 
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~ 2"0 
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- ~ 0 . 4  1 .00 

- -  0"2 0"50 
0.1 0"25 

0.45 0 0 

- ~ 0-4 1 .00  

0.2 0.50 

0.1 0.25 
0 0 

i i I I I l I I J 
20 40 60 80 I O0 120 140 160 I BO 

2{~ (degrees) 

Fig. 34. Min imum receiving aper ture  width ,  (yR)min., as a funct ion  of 20 for Rx/Rz-=l and ?x----0.70 ° and  for several 
values of ?m and  Pc. The crys ta l  d iameter  is given in degrees, Yc (o), and  also in ram.,  dc (ram.), for the  par t icu lar  case 
Rx= 14-55 era. 

A C 15 - -  65 
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values and  so takes precedence. I t  m a y  be remarked 
tha t  for most  exper imental  work it is quite satis- 
factory to employ a goniometer for which Rx/R~ = 1. 
As seen from Fig. 34, for this ratio there is l i t t le 
dependence of the m i n i m u m  receiving aperture width 
upon crystal  diameter  at small  Bragg angles. 

We now are in a position to formulate an expression 
for the receiving aperture width per t inent  to the 
w-scan technique. Since the receiving aperture is 
s ta t ionary during the rotat ion of the crystal  through 
its diffracting range, i t  is clear tha t  its m i n i m u m  width 
is s imply equal to 2 L ~  as defined by  equat ion (D.5)" 

~R >_ y x + 2 ~ + y c ( ( 2 f l / ~ ) + ( R x / R ~ ) A ) .  (D.10) 

It only remains to determine the maximum value of 
the last term in (D.10) for the appropriate range of 
experimental parameters. Substitution of numerical 
quantities shows that this term assumes a maximum 
value when 20 -* 0 ° and 2/~ -~ ~c. Under these circum- 
stances A = I (refer to equation (D-4), and the expres- 
sion of general applicability to the 09 scan becomes 

yR >-- ~x+2~%+7c[1 +(Rx/Rz)] . (D.11) 

In this expression the numerical value to be assigned 
to 2~ is in any case rather arbitrary inasmuch as its 
Cauchy-like profile exhibits no well defined angular 
limits. However, at large Bragg angles where 2y~ 
becomes of significant magnitude in relation to the 
other terms of (D-11), it is suggested that it be 
assigned a value at least equal to the angular separa- 
tion of the Ks doublet components plus five times 
the width at half-maximum intensity of either com- 
ponent, both on the 20 scale. The absence in equation 
(D.9) of a term in ~ and in equation (D.ll) of a term 
in ~tm shows that for minimum receiving aperture 
widths, other factors being equal, it is advantageous 
to employ the 20 scan at large Bragg angles and the 
co scan for highly mosaic crystals. 

In conclusion a word of warning must be sounded 
regarding the significance of the quantities ~'c, av, 
and ya in the equations of this appendix. For a non- 
cylindrical crystal ~'c should be defined as the angular 
equivalent of the longest diagonal of its cross-section. 
The dimensions defined by equations (D-l), (D.7), 
(D.9), and (D.11) apply directly to rectangular aper- 
tures. For practical reasons, however, it may happen 
that the aperture is made circular, which places an 
addit ional  restriction upon the dimensions of the 
diffracted beam. The upper l imit  tha t  this factor can 
assume is given by the ratio of the edge of a square 
to the diameter  of the smallest circle which can be 

circumscribed about  it, which is 1/1/2. For this reason 
and also in recognition of the need for some tolerance 
between the dimensions of the beam and receiving 
aperture, i t  is suggested tha t  in the calculation of 
minimal  apertures, m a x i m u m  crystal dimensions, etc., 
with the equations of this appendix,  a v and yR be 
replaced respectively by  av/~/2 and yR/V2. 
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